Пример расчет стены подвала


Расчет фундамента под наружную стену подвала. Пример расчета.

Содержание:

1. Расчет фундамента под наружную стену подвала. Исходные данные.

2. Расчет устойчивости основания против сдвига.

3. Расчет устойчивости основания под подошвой.

4. Расчет основания по деформациям.

5. Определение усилий в стене подвала.

6. Определение расчетных давлений под подошвой фундамента.

7. Расчет армирования стены подвала (по 1 предельному состоянию).

8. Расчет армирования стены подвала (по 2 предельному состоянию).

9. Расчет армирования подошвы фундамента под наружную  стену подвала (по 1 предельному состоянию).

10. Расчет армирования подошвы фундамента под наружную  стену подвала (по 2 предельному состоянию).

О том, почему важен расчет фундамента под наружную стену подвала, и почему подошва такого фундамента зачастую получается значительно шире, чем у фундамента без подвала, можно почитать в этой статье «Фундамент для дома с подвалом».

В данной статье мы подробно и с пояснениями пройдемся по расчету монолитной железобетонной стены подвала с фундаментом под эту стену в виде монолитной ленты. Расчет выполнен согласно «Руководству по проектированию подпорных стен и стен подвалов для промышленного и гражданского строительства», к сожалению, в этом руководстве нет подобного, очень нужного примера. Постараемся исправить данную ситуацию.

Пример расчета в формате pdf без пояснений можно скачать здесь.

Хочу сразу сделать ударение: хоть обычно подобные расчеты и называют «расчет стены подвала», главное в нем – это именно расчет габаритов подошвы фундамента.

Расчет был оформлен в Экселе, чтобы стать многоразовым помощником. В статье будут выложены скрины расчета с необходимыми пояснениями. Возможно, подобный расчет можно было сделать гораздо совершенней, но моей целью было не изучить Эксель, а сделать рабочий инструмент (расчет), который в итоге можно распечатать, проверить другому человеку, не залезая в компьютер, и в конце концов сдать в архив. Поэтому замечания по оформлению принимаются только в виде советов, как можно было бы сделать лучше и проще.

Расчет пронумерован по пунктам (в самом первом столбце А), на них будут даваться ссылки в пояснениях.

Исходные данные.

Внимание! Если в вашем примере условия пунктов 1-5 исходных данных отличаются, считать по этому примеру нельзя, т.к. формулы расчета будут другими – подобрать подходящие формулы можно в руководстве.

1) На стену опирается перекрытие и препятствует смещению верхней части стены по горизонтали, т.е. стена имеет две опоры – внизу и вверху.

2) Грунт засыпки не доходит до верха стены (если у вас не так, нужно брать другие формулы для расчета в руководстве).

3) Стена и фундамент – монолитные железобетонные, с заведением арматуры стены в фундамент.

4) Грунт обратной засыпки – связный, т.е. сцепление не равно нулю.

5) Сложные инженерно-геологические условия (наличие слабых прослоек или зон в грунте, наличие грунтовых вод и т.п.), а также значительные нагрузки на поверхности грунта – отсутствуют (иначе следует выполнять расчет согласно примечанию к п. 8.13 руководства).

6) Коэффициенты для расчета (они выбраны из украинских норм, обратите на это внимание, если считаете не в Украине):

7) Геометрия стены – здесь приведены все значения, которые нам понадобятся в ходе расчета:

На рисунке стена показана в разрезе. Слева – засыпка грунтом с улицы до отметки -0,45 м, справа – подвал.

8) Характеристики грунта. Это один из определяющих факторов для расчета. В расчете используются два грунта:

а. грунт основания – это неповрежденный (не замоченный, не замороженный, не нарушенный при отрытии котлована) грунт основания – по-простому, земля, на которой лежит фундаментная лента. Его характеристики берем из инженерно-геологического отчета.

б. грунт засыпки – это либо местный грунт, который был изъят из котлована (чаще всего так и делается), тогда его характеристики берутся с понижающими коэффициентами, как показано в нашем расчете и взято из руководства; либо привезенный песок или доменный шлак (тогда понижающие коэффициенты также используются, ведь грунт невозможно уплотнить до природного состояния, а сцепление нужно брать нулевое). По грунтам засыпки следует заметить следующее. Нельзя использовать для обратной засыпки местные просадочные грунты. Также иногда бывает, что с местным грунтом (глиной, суглинком) фундаментная лента получается слишком широкой, тогда можно просчитать ее с обратной засыпкой, имеющей высокий угол внутреннего трения (35-40 градусов), это значительно снижает горизонтальное давление грунта на стену и резко уменьшает ширину подошвы. Если завезти грунт для засыпки не дорого, то стоит рассмотреть при проектировании данный вариант. Но всегда следует учитывать, что доменный шлак – наихудший с точки зрения экологичности вариант. И обратите внимание на ограничение для сцепления грунта засыпки (не более 0,7 и не более 1,0 т/м2) – оно действует всегда.

9) Нагрузки – это тоже немаловажный фактор, нужно правильно собрать нагрузки перед расчетом. Нагрузка на грунте, если она не определена, берется не меньше 1 т/кв. м. Нагрузки на стену подвала собираются от веса всех конструкций, опирающихся на фундамент плюс временная нагрузка на всех перекрытиях-покрытиях (включая снеговую) – как собрать нагрузку на ленточный фундамент можно узнать в этой статье.

Итак, переходим к расчету устойчивости основания против сдвига.

Внимание! Для удобства ответов на ваши вопросы создан новый раздел "БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ".

 

class="eliadunit">
Добавить комментарий

svoydom.net.ua

Расчет несущей способности стены подвала кирпичного здания

Схема приложения вертикальных нагрузок

Цель: Проверка расчета стены подвала.

Задача: Проверить правильность анализа устойчивости в плоскости эксцентриситета при внецентренном сжатии сечения, в котором действует максимальный изгибающий момент.

Ссылки: Пособие по проектированию каменных и армокаменных конструкций (к СНиП II-22-81), 1989, с. 81-82.

Файл с исходными данными:

Пример 18.SAV;
ComeIn 18.doc — отчет

Исходные данные:

H = 2,8 м Высота стены подвала
b×h = 0,4×0,58 м Размеры бетонных блоков
Aп = 25 % Пустотность блоков по площади среднего горизонтального сечения
Vп = 15 % Пустотность блоков по объему
l0 = 2,65 м Расчетная высота стены подвала
b1 = 0,51 м Толщина кирпичной стены первого этажа
N1 = 150 кН Расчетная нагрузка на 1 м стены подвала от стены первого этажа
е1 = 5,5 см Эксцентриситет приложения нагрузки от стены первого этажа
N2 = 22 кН Расчетная нагрузка на 1 м стены подвала от опирающегося на нее перекрытия над подвалом
е2 = 16 см Эксцентриситет приложения нагрузки от опирающегося на стену подвала перекрытия над подвалом
γ = 16 кН/м3 Объемный вес грунта в насыпном состоянии
φ = 38° Расчетный угол внутреннего трения грунта
p = 10 кН/м2 Нормативное значение поверхностной нагрузки от грунта в насыпном состоянии
Камень Крупные пустотелые бетонные блоки, марка 100
Раствор Обычный цементный с минеральными пластификаторами, марка 50

 

Исходные данные КАМИН:

 

Коэффициент надежности по ответственности  γn = 1

Возраст кладки - до года
Срок службы 25 лет
Камень - Крупные бетонные блоки высотой 500-1000 мм
Марка камня - 100
Раствор - обычный цементный с минеральными пластификаторами
Марка раствора - 50
Понижающий коэффициент 0,5
Объемный вес кладки 22,44 кН/м3

 

Конструкция

 

L = 2,65 м

B = 0,4 м

Be = 0,51 м

Погонные нагрузки

Нагрузка на поверхности 12 кН/м2

Объемный вес грунта 19,2 кН/м3

Угол естественного откоса грунта 38 град

Коэффициент длительной части нагрузки 1

Nп = 22 кН/м

Eп = 0,16 м

 

Нагрузки от вышележащих перекрытий

N = 150 кН/м

E = 0,055 м

Коэффициент длительной части нагрузки 1

 

Сравнение решений

Проверка

устойчивость при внецентренном сжатии среднего сечения

Теория

181,5/380 = 0,478

КАМИН

0,481

Отклонение, %

0,624

Комментарии

  1. В Пособии используются нормативные значения нагрузки на поверхности и объемного веса грунта, которые далее в процессе расчета умножают на соответственные коэффициенты перегрузки n1 = n2 = 1,2. В КАМИН используются полученные расчетные значения этих величин соответственно pn1 = 10 ∙ 1,2 = 12 кН/м2 и γ ∙ n2 = 16 ∙ 1,2 = 19,2 кН/м3.
  2. Значение объемного веса кладки получено умножением объемного веса бетона 24 кН/м3 на коэффициент 0,85, учитывающий пустотность блоков по объему Vп = 15 %, и на коэффициент перегрузки для каменных конструкций 1,1: γкл = 24 ∙ 0,85 ∙ 1,1 = 22,44 кН/м3.
  3. В КАМИН необходимо ввести возраст кладки и срок службы. Т.к. в задаче они не определены, использованы данные "до года" и 50 лет соответственно.
  4. В КАМИН необходимо ввести высоту столба. Т.к. в задаче определена расчетная высота столба 3 м, это значение использовано для высоты столба при коэффициентах расчетной высоты, равных 1.

 

scadsoft.com

Расчет фундамента под наружную стену подвала. Расчет армирования стены подвала (по 2 предельному состоянию). Пример расчета.

Начало расчета смотрите здесь:Расчет фундамента под наружную стену подвала.

Расчет по второму состоянию состоит из нескольких этапов и включает в себя расчет по прогибу и по раскрытию трещин. По прогибу считать стену подвала смысла нет, и мы эту часть расчета упускаем. По раскрытию трещин расчет проводится в несколько этапов: сначала нужно выяснить необходимость этого расчета (раскрываются ли вообще трещины в нашей конструкции?), затем (если трещины раскрываются) следует выполнить расчет по раскрытию трещин наклонных и нормальных к оси элемента. Расчет этот следует выполнять с учетом изменения 1 к СНиП 2.03.01-84.

В нашем случае это будет очень краткий расчет из одного пункта. При наших размерах стены и нагрузках получился совсем небольшой изгибающий момент, и трещины в стене не образуются – можно облегченно вздохнуть и перейти к расчету подошвы.

В пункте 11.1 мы выуживаем из предыдущего расчета максимальный изгибающий момент, действующий на стену.

Для того, чтобы определиться, по какой формуле находить Мcrc, определяем процент армирования стены μ, и выясняем, что он меньше 0,01. Это условие позволяет нам пренебречь арматурой и определить Мcrc как для бетонного сечения.

И наконец, в пункте 11.3 мы проверяем условие (233) пособия, сравнивая момент внешних сил (собственно, это наш момент 1,23 т∙м) и момент Мcrc, воспринимамый сечением стены при образовании трещин – по простому тот момент, при котором трещины начнут образовываться. Выясняется, что нашего момента не достаточно, чтобы трещины смогли начать образовываться.

Переходим к расчету армирования подошвы.

class="eliadunit">
Добавить комментарий

svoydom.net.ua

Расчет фундамента под наружную стену подвала. Расчет устойчивости основания под подошвой (по 1 предельному состоянию). Пример расчета.

Начало расчета смотрите здесь:Расчет фундамента под наружную стену подвала.

Следующий этап расчета – расчет устойчивости основания под подошвой фундамента. Всю нагрузку фундамент передает на грунт, и основание должно выдержать эту нагрузку, не разрушившись, не нарушив своей структуры. В данном расчете мы находим несущую способность основания (усилие, которое оно способно выдержать без разрушения) и сравниваем ее с нагрузкой, передаваемой фундаментом.

Сначала мы определяем σ3 – интенсивность горизонтального давления на линии обреза фундамента (низ стены). Графически ее тоже можно определить, числа должны сойтись:

Затем определяем коэффициенты: m1, отвечающий за поворот ленточного фундамента, и m2, учитывающий податливость верхней опоры. Формулу для определения  m2 следует выбирать из п. 8.11 руководства; в нашем случае взята формула для случая, когда перекрытие расположено выше уровня земли.

Далее по формулам таблицы 5 руководства находим расчетный момент и поперечную силу в стене на уровне обреза фундамента. Обратите внимание, что в нашем расчете максимальное горизонтальное давление внизу стены обозначено σ3, т.к. σ2 уже использовалось в расчете на устойчивость против сдвига; и точно так же высота положительного давления грунта на стену принята Н2, а не Н1 – все это наглядно видно на чертеже ниже.

Далее находим сумму моментов всех сил относительно точки О, находящейся на пересечении оси, проходящей через центр тяжести подошвы, и уровня низа подошвы.

Вертикальные силы Р1…Р5 и их положение относительно точки О показаны на рисунке ниже. Как видно из рисунка, графически расчет можно и нужно проверять.

Далее мы находим эксцентриситет приложения равнодействующей силы и приведенную ширину подошвы.

В чем суть? Так как сила N давит не посередине подошвы, а с эксцентриситетом, то воспринимает давление от силы N не все основание, а его часть, расположенная под приведенной шириной подошвы (см. рис. 12 руководства).

В пунктах 6.12 и 6.13 мы находим безразмерные коэффициенты согласно формулам п. 6.18 руководства.

Далее находим несущую способность основания под подошвой и проверяем, выдержит ли она вертикальное давление.

Затем переходим к расчету основания по деформациям.

class="eliadunit">
Добавить комментарий

svoydom.net.ua

5. Пример 2. Расчет прочности стены подвала кирпичного здания

Проверить несущую способность стены подвала расчетной высотой 2,95 м, сложенной из бетонных полнотелых блоков шириной 0,6м. Бетон блоков В7,5 (М100), кладочный цементный раствор М 50 (рис.5.1).

Расчетная нагрузка на 1м длины стены подвала от кирпичной стены толщиной 0,64 м и и междуэтажных перекрытий NI = 750 кН.

Стена первого этажа расположена с эксцентриситетом относительно оси подвала e1 = 0,02 м. Расчетная нагрузка на 1 м длины стены подвала от надподвального перекрытия N2 = 50 кН.

Эксцентриситет приложения нагрузки e2 = 0,26 м.

На поверхности земли действует равномерно распределенная нагрузка интенсивностью 10 кПа. Грунт засыпки - суглинок (см. раздел 3).

Характеристики грунта засыпки для расчетов по I группе предельных состояний:

Удельный вес грунта засыпки

1 = f n= 1,15 ▪ 0,95 ▪ 18,5 = 20,22 кН./м3

Угол внутреннего трения грунта засыпки

φI = φ 0,9 / 1,15 = 16 ▪ 0,9/1,15 = 12,52°

Таблица 4.1 Расчетные сопротивления сжатию кладки из крупных сплошных бетонных блоков,R,МПа

Марка бетона блока

Расчетное сопротивление сжатию кладки при марке

раствора

200

150

100

75

50

25

300

7,5

7,2

6,9

6,7

6,5

6,2

250

6,7

6,4

6,1

5,9

5,7

5,4

200

5,4

5,2

5,0

4,9

4,7

4,3

150

4,6

4,4

4,2

4,1

3,9

3,7

100

-

3,3

3,1

2,9

2,7

2,6

75

-

-

2,3

2,2

2,1

2,0

50

-

-

1,7

1,6

1,5

1,4

Таблица 4.2 Значение коэффициентов продольного изгиба при

отношении λh (λhc)

λh / (λhc)

4

6

8

10

12

14

16

18

22

26

30

34

Коэфф. прод. изгиба φ(φc)

1,0

0,98

0,95

0,92

0,88

0,85

0,81

0,77

0,69

0,61

0,53

0,44

Рисунок 5.1 Расчет стены подвала по прочности

Толщина эквивалентного слоя грунта составит

hred = 10 / 17,58 = 0,57 м

Интенсивность бокового давления грунта в уровне планировочной отметки

q1 = l,2 17,58 0,57 tg2(45° - 12,52°/2) = 7,74 кН/м.

Интенсивность бокового давления грунта в уровне низа стойки

q2 = 1, 15 17,58 (1,2/ 1,15 0,57+2,36) tg 2 (45 - 12,52°/2) = 38,45 кН/м.

Изгибающие моменты от бокового давления грунта определим в двух сечениях.

Сечение 1-1 (х = 0,4H1 = 0,4 2,91=1,16 м).

М0,4 = 1/6 {2,362 / 2,91 (2 7,74 + 38,45) 1,16 –

- ( 3 7,74 + (38,45 – 7,74) (1,16 – 2,91 +2,36) / 2,36) (1,16 – . -2,91 +2,36)2} = 18,02 кНм.

Сечение 2-2 (х = 0,6Н1 = 0,6 Х 2,91 = 1,75м).

М 0,6 = l/6 {2,362 / 2,91 (2 7,74 + 38,45) 1,75 -

- [3 7,74 + (38,45 - 7,74) (1,75 - 2,91 + 2,36) /2,36 ] (1,75 - 2,91+ . +2,36)2} = 20,78 кНм.

Суммарный изгибающий момент в уровне низа надподвального перекрытия от нагрузок, действующих выше обреза фундамента.

M1 = - N1е1 + N2e2 = -750 0,02 + 50 0,26 = -2,0 кНм.

N1 = N1 + N2 = 750 + 50 = 800 кН.

Эксцентриситет равнодействующей продольных сил

e = M1 / N1 = 2,0 / 800 =0,0025 м.

Суммарный эксцентриситет с учетом случайного равного 0,04 м составит

ес = е + eсл =0,0025 + 0,04 = 0,0425 м.

Расчетное значение изгибающего момента в уровне низа плит надподвального перекрытия равно:

Мр = n1 eс = -800 0,0425 = -34,0 кНм.

Суммарные значения моментов в сечениях:

в уровне обреза фундамента Мp = -34 кНм;

в сечении 1-1 M0,4= -34,0 0,6 - 18,02 = -38,42 кНм;

в сечении 2-2 М0,6= -34,0 0,4 - 20,78 = -34,38 кНм.

Проверку прочности стены производим для сечения 1-1 с

максимальным значением изгибающего момента. Прочность стены проверяем при внецентренном сжатии с эксцентриситетом

еo = M0,4/ N1 = 38,42 / (800 + 0,6 1,0 1,16 24 1,1) = 0,047 м.

Расчетную несущую способность стены определим - по формуле (4.4) с подстановкой следующих значений:

λh =2,91/0,6 = 4,85; из табл.4.2 φ = 0,99;

hc = h - 2е0= 0,6 – 2 0,047 = 0,506 м;

λhc = 2,91 / 0,506 = 5,75; из табл.4.2 φc= 0,98;

φı = (0,99 + 0,98) / 2 = 0,995;

R =2,7МПа; из табл.4.1;

А = 0,6 1,0 = 0,6м2;

Ac = 0,6 (1 - 2 0,047 / 0,6) = 0,506 м2;

 =1 + 0,047 / 0,6 = 1,078 < 1,45.

Ncr = 1,0 0,995 2700 1,1 0,506 1,078 = 1611,9 кН > N1 = 818,4кН.

Расчеты показывают, что прочность стены подвала достаточна.

ЛИТЕРАТУРА

  1. Основания и фундаменты: Справочник / Под. ред. Г.И.Швецова.-М.: Высшая школа,1991. 383с.

  2. Веселов В.А. Проектирование оснований и фундаментов .- М.: Стройиздат, 1990.-304 с.

  3. Проектирование оснований и фундаментов промышленных и гражданских зданий. Методические указания по курсовому и дипломному проектированию.- изд. КПИ, 1988, 60с.

  4. СНиП 2.02.01-83*. Основания зданий и сооружений. -М.: Стройиздат,1985.- 40с.

  5. Проектирование подпорных стен и стен подвалов: Справочное пособие к СНиП. –М .:Стройиздат, 1990.-104с.

  6. СНиП II-22-81.Каменные и армокаменные конструкции.– М.: Стройиздат, 1983.- 40с.

  7. Пособие по проектированию каменных и армокаменных конструкций к СНиП II-22-84 “Каменные и армокаменные конструкции. Нормы проектирования ”.-М.: ЦИТП Госстроя СССР, 1989. – 152с.

Проектирование оснований фундаментов и стен подвальных

помещений. Методические указания по курсовому и дипломному

проектированию по курсу «Основания и фундаменты» для

студентов всех форм обучения специальностей:

studfile.net

Расчет толщины стен цокольного этажа и подвала

Правильный расчет стены подвала подразумевает учет влияния множества факторов. В частности, это уровень грунтовых вод на участке, тип грунта, высота будущего здания, материалы, используемые для строительства и т. д. Все работы по проектированию рекомендуется поручать специалистам. Однако, для общего понимания технологии расчета, вы вполне можете воспользоваться приведенной ниже информацией.

При наличии подвала или цокольного этажа, малозаглубленный ленточный фундамент дома автоматически становится заглубленным. Иными словами, он будет представлять собой полноценную стену под землей, а не просто основание для строения.

Фундамент для сооружения с подвалом

Если подвал делается уже после возведения основного сооружения, то необходимо соблюдать следующее правило: образовавшиеся после выемки грунта пустоты не должны попасть в пределы 45-градусной проекции подошвы ленточного фундамента с одной и другой стороны.

Фундамент должен иметь достаточно широкую подошву.

Фундамент следует делать максимально прочным и надежным, чтобы его стены могли успешно противостоять горизонтальным сдвигам вследствие давления окружающего грунта. В качестве фундаментного основания рекомендуется использовать подушку из монолитного бетона, связанную с лентой арматурным каркасом. Так как вес фундамента достаточно большой, подошву следует делать широкой.

Давление грунта на стену подвала.

Планируя строительство цокольного этажа, который в дальнейшем станет жилой комнатой, следует учитывать, что высокие стены (от 200 см и более), расположенные под землей, будут в течение всего времени эксплуатации испытывать значительное давление со стороны грунта. Поэтому в процессе возведения подвального помещения армированию бетонной стены следует уделить особое внимание.

Шаг между арматурными стержнями в каркасе стены не должен быть чересчур большим. Рекомендуется делать его меньше 40 см по горизонтали и вертикали. Каркас стены должен быть обязательно связан с каркасом фундаментной подушки. Кроме того, необходимо соблюдать правила армирования углов и примыканий стен.

Монолитная армированная бетонная стена является оптимальным вариантом в плане прочности, долговечности и устойчивости к давлению грунта. Такая конструкция надежнее, чем, к примеру, блочные или кирпичные.

Дополнительное усиление конструкции достигается за счет постройки пересекающихся внутренних стен подвального помещения под внутренними стенами сооружения.

Минимальная толщина стен

В зависимости от используемых в строительстве материалов, а также глубины подземного помещения, существуют минимальные значения толщины стен подвалов, а также ширины подошвы фундамента.

Расчет толщины подвальных стен при строительстве из различных материалов (минимальные значения).

Если стены подвала возводятся из небольших по размеру строительных блоков (например, керамзитобетонных), то кладка должна быть обязательно усилена с помощью продольного армирования и армопояса, проложенного по верхней границе кладки. Что касается сборных бетонных блоков, то нужно учитывать тот факт, что для фундамента дома с подвалом подходят только те, которые произведены с использованием бетона М150 и выше.

Ширина стен и размеры подошвы фундамента из монолитного бетона и блоков.

Представленная выше таблица предполагает, что:

  • Стены имеют боковое опирание, если балки потолка подвального помещения опираются о верхнюю часть его стены.
  • Если в стене имеется промежуток (проем) шириной более 120 см, или несколько промежутков, суммарная ширина которых больше 1/4 длины стены, а армирование по контуру этих промежутков отсутствует – часть стены под проемом рассчитывается как не имеющая бокового опирания. В том случае, если ширина участков стены меньше ширины промежутков, то вся стена считается как один большой проем.

Эти критерии нужно учитывать, производя расчет для стены подвала. Конструкция должна обладать хорошей устойчивостью. Следует также помнить об одном из правил строительства – устойчивость стены напрямую зависит от ее длины. Чем она короче, тем конструкция крепче и надежнее.

Деформационные швы

Для больших подвальных помещений (длина стен составляет больше 25 метров) необходимо устройство специальных деформационных швов, которые будут располагаться друг от друга на расстоянии в 15 метров или меньше. Кроме того, швы должны иметься в местах, где наблюдаются перепады высоты сооружения. Их конструкция должна предусматривать защиту от проникновения влаги внутрь подвала.

Расстояние от облицовки до земли

Если внешняя отделка дома производится при помощи кирпича, то декоративная кладка может быть продолжена и на часть стены подвального помещения, которая выступает над землей (верхняя часть подвальной стены должна подниматься не менее чем на 15 см над поверхностью грунта).

Толщина надземной части подвальной стены в этом случае может быть уменьшена до 9 см. Облицовочная кладка крепится к бетонной стене с помощью специальных стяжек. Расстояние между стяжками не должно быть слишком большим: до 90 см по горизонтали и до 20 см по вертикали. Свободное пространство между стеной и облицовочной кладкой заполняется раствором.

Если же облицовка первого этажа будет выполнена из дерева или посредством оштукатуривания по теплоизоляционному материалу либо обрешетке, то от нижней границы обшивки до грунта должен оставаться промежуток в 25 см и более.

Арматурный каркас

Стены цокольного этажа или подвального помещения, как уже было сказано ранее, нуждаются в дополнительном укреплении при помощи арматурного каркаса. Важным качеством такого каркаса является его упругость. Именно поэтому рекомендуется использовать вязку арматурных прутьев, а не жесткое сварочное соединение.

В процессе эксплуатации здания происходят некоторые подвижки фундамента. Это случается во время обильных осадков или при морозном пучении грунта. Арматурный каркас внутри подземных стен будет подвергаться серьезной нагрузке. Со связанными между собой стержнями в таких условиях ничего не произойдет, в то время как сварочное соединение при значительном давлении попросту ломается. А ремонт в подобных ситуациях чрезвычайно сложен и дорог.

Связывание арматурного каркаса осуществляется в тех местах, где металлические стержни пересекаются. Для выполнения этой работы требуется использовать специальную проволоку, предназначенную для вязки арматуры. По сути, ей может стать любая проволока, диаметр которой превышает 2—3 мм. Работа выполняется специальным крючком или пистолетом.

Ржавчина на прутьях

Не следует использовать бывшие в употреблении металлические стержни, потому что старая арматура в ряде случаев имеет дефекты, которые могут проявиться во время эксплуатации. Экономия при покупке материалов в этом случае не оправдана.

Если же новые металлические стержни имеют следы ржавчины, то в этом ничего страшного нет. Не стоит пытаться удалить ржавчину или закрасить ее. Такие манипуляции негативно скажутся на сцеплении арматуры с бетоном. При устройстве каркаса из арматуры металлические стержни можно резать при помощи болгарки.

Для сгибания прутьев можно воспользоваться специальными устройствами для разогрева металла на месте. Однако, если есть возможность, от такого подхода следует отказаться, потому что в процессе нагревания меняется структура металла, а это отрицательно сказывается на его эксплуатационных характеристиках.

Не допускается монтаж арматурной конструкции в опалубку, куда ранее уже был залит бетон. Если этапы работы были перепутаны, то весь процесс проводится заново: убирается раствор, опалубка полностью демонтируется, зачищается и устанавливается снова, в нее укладывается металлический каркас и после этого заливается новый раствор.

Наращивание арматурного каркаса

Проводить работы по наращиванию арматурной конструкции в горизонтальном или вертикальном направлении не рекомендуется. Это связано с тем, что при значительных нагрузках в местах соединения могут образоваться разрывы.

Наращивание арматурного каркаса разрешается лишь в тех случаях, когда подвальные стены в процессе эксплуатации не будут испытывать значительных нагрузок (легкие стройматериалы, низкий уровень грунтовых вод и т. д.).

Самостоятельно провести армирование стен не всегда просто. Особенно если вы ранее не занимались строительством и не обладаете требуемыми навыками и умениями. Для этой работы рекомендуется нанять профессиональных строителей.

Толщина стен подвала, диаметр используемой арматуры и количество строительных материалов должны быть заранее определены с учетом особенностей эксплуатации сооружения, уровня грунтовых вод и других факторов.

podvaldoma.ru

Расчет наружной фундаментной стены. Теоретические предпосылки

Для примера рассмотрим следующую расчетную схему, взятую из руководства по расчету фундаментных стен из пустотных блоков:

Рисунок 418.1. Разрез фундаментной стены, возможная расчетная схема и эпюры изгибающих моментов для фундаментной стены - балки на шарнирных опорах.

На данном рисунке грунт, находящийся под полом в подвале и справа от фундаментной стены и под отмосткой, никак не обозначен. Однако у простого человека гораздо больше вопросов могут вызвать обозначения на расчетной схеме и вообще, почему рассматривается именно балка на шарнирных опорах?

Ответ будет примерно следующим:

Подбор расчетной схемы, наиболее точно соответствующей условиям работы конструкции, особенно когда дело касается фундаментов и грунтов - задача не из простых. При указанной конструкции здания (есть пол подвала - железобетонная плита и есть плита перекрытия, каким-то образом связанная с фундаментной стеной) расчетная схема, показанная на рисунке 418.1, действительно наиболее приемлема, так как и плиту перекрытия и пол подвала можно рассматривать как шарнирные опоры балки, не мешающие повороту поперечных сечений балки, а только препятствующие горизонтальному смещению на опорах, так как модуль упругости материала плиты и пола значительно больше модуля упругости грунта.

Таким образом принятая расчетная схема позволяет провести максимально простой расчет и обеспечивает максимально возможный запас прочности.

В целом расчет сводится к проверке стены на прочность и на устойчивость, так как в данном случае наружная фундаментная стена рассматривается не только как балка, но и как стойка с теми же шарнирными опорами.

Если расчет по такой расчетной схеме кажется вам слишком простым, а возможный запас прочности чрезмерным, то для выполнения более точных расчетов следует учесть следующие факторы:

1. Данную фундаментную стену более правильно рассматривать не как стержень с шарнирными опорами, а как пластину с шарнирными опорами по контуру.

Или как пластину с шарнирными опорами сверху и снизу и жестким защемлением по бокам. Фундаментные стены, перпендикулярные рассматриваемой, могут рассматриваться как шарнирные боковые опоры или даже как жесткое защемление в зависимости от общей конструкции здания.

Влияние этого фактора тем больше, чем меньше соотношение длины стены к высоте l/h2. Если это соотношение стремится к бесконечности, то влияние этого фактора стремится к нулю, во всяком случае для рассматриваемого участка стены, наиболее удаленного от перпендикулярных стен. Другими словами, чем больше длина фундаментной стены по сравнению с высотой, тем ближе принятая расчетная схема к реальной работе конструкции.

2. В результате перераспределения напряжений в материале фундаментной стены на верхней и нижней условных опорах может возникать частичное защемление.

В целом влияние данного фактора очень незначительно.

3. Следует учитывать возможные деформации и пола и плиты при сжатии.

Эти деформации могут привести к изменению геометрии рассматриваемой системы, а значит и к изменению действующих нагрузок. Как правило эти деформации относительно небольшие, поэтому влиянием этого фактора можно пренебречь.

Сам алгоритм расчета может выглядеть примерно так:

Как правило для упрощения расчетов рассматривается 1 погонный метр длины фундаментной стены. Именно этот погонный метр и рассматривается как стойка или как балка, имеющая ширину 1 метр.

1. Определяется продольная сила N1, действующая на наружную фундаментную стену - стойку с шарнирными опорами.

Эта сила может быть приложена с эксцентриситетом е1 по отношению к нейтральной оси стойки, например при такой конструкции здания, как показано на рисунке 418.1.

В сосредоточенную нагрузку N1 входят:

1.1. Собственный вес вышележащих стен.

Пример определения нагрузки от собственного веса приводится отдельно.

1.2. Нагрузка от междуэтажных перекрытий (кроме перекрытия над подвалом).

Как определяется эта нагрузка более подробно рассматривается в п.2, где рассматривается нагрузка от перекрытия над подвалом.

1.3. Нагрузка от кровли.

Для определения этой нагрузки следует знать не только снеговые и ветровые нагрузки, но также и конструкцию кровли.

При действии нагрузки N1, приложенной с эксцентриситетом е1 в поперечных сечениях стойки с шарнирными опорами будут действовать изгибающие моменты. Эпюра, отражающая изменения моментов по длине стойки от действия этой нагрузки, обозначена как М1.

Максимальное значение момента при действии продольной силы, приложенной с эксцентриситетом, будет на верхней опоре и составит:

М1max = N1e1 (418.1.1)

На нижней опоре момент будет равен нулю, а чтобы определить значение в любом другом сечении, нужно значение уравнения (418.1) умножить на (1 - x/H1):

M1(x) = N1e1(1 - x/H1) (418.1.2)

где х - это расстояние от верхней опоры до рассматриваемого сечения.

Примечание: такие же результаты мы бы получили, если бы рассматривали не стойку с шарнирными опорами, а балку с шарнирными опорами, на одной из которых приложен изгибающий момент.

2. Определяется нагрузка Q от перекрытия над подвалом.

Вообще нагрузка Q - это опорная реакция, определяемая при расчете балки или плиты опертой по контуру, если данное перекрытие монолитное размером на помещение. При этом наружная фундаментная стена является одной из опор такой балки или плиты.

В целом и балка и плита могут быть как однопролетными, так и многопролетными и это следует учитывать при определении нагрузки Q. Больше подробностей в разделах Балки и Пластины.

Для упрощения расчетов значение опорной реакции многопролетной балки на крайней опоре можно принимать, как для однопролетной балки, это приведет к дополнительному запасу прочности. При монолитной плите перекрытия с опиранием по контуру значение опорной реакции можно определить по таблицам.

В абсолютном большинстве случаев нагрузка Q к стойке прикладывается с эксцентриситетом е2. И не только потому, что перекрытие как правило опирается только на часть фундаментной стены, как это показано на рисунке 418.1, но еще и потому, что под действием нагрузки на плиту происходит перераспределение напряжений на опорной площадке фундаментной стены.

Это следует учитывать при определении значения эксцентриситета е2. Для упрощения расчетов это значение можно принимать равным 2/3 длины опорного участка плиты.

Как и в случае с продольной силой N1, при действии продольной силы Q в поперечных сечениях фундаментной стены-стойки действует изгибающий момент. Правила определения этого момента такие же, как и в п.1 с той только разницей, что растянутая зона сечения будет с противоположной стороны, что и отражено на эпюре М2.

3. Определяется распределенная равномерно изменяющаяся горизонтальная нагрузка q на стойку.

Эта нагрузка включает в себя:

3.1. Нагрузку от собственного веса грунта.

На первый взгляд это кажется странным, ведь нагрузка от собственного веса грунта направлена вертикально вниз и не должна передаваться на стену. Однако ничего странного в этом нет. Дело в том, что грунт, как и любое другое физическое тело, под воздействием нагрузки сжимается в вертикальном направлении, но при этом пытается сохранить свой объем и потому расширяется в горизонтальном направлении. Отсюда и возникает горизонтальная составляющая нагрузки на фундаментную стену.

Чтобы определить эту горизонтальную составляющую, необходимо знать физические характеристики грунта, который будет использоваться для обратной засыпки. В частности плотность γ и угол внутреннего трения ф (вообще-то этот угол как правило обозначается греческой литерой φ и этой же литерой обозначается коэффициент продольного изгиба, о котором речь ниже, поэтому чтобы не возникало путаницы, я обозначил угол внутреннего трения литерой ф)

Чем меньше угол внутреннего трения, тем меньше горизонтальная составляющая нагрузки на фундаментную стену. В зависимости от состава и влажности грунта, использованного для обратной засыпки, значение угла может изменяться в пределах 20-45°.

Чтобы не возиться с точным определением угла внутреннего трения, тем более при отсутствии результатов геологоразведки, что в малоэтажном частном строительстве случается достаточно часто, я рекомендую для расчетов принимать значение угла φ = 45°, т.е. рассматривать грунт как условную жидкость. Это не только обеспечит возможный запас прочности, но и значительно упростит расчеты. При этом значение нагрузки, действующей в любом поперечном сечении стойки ниже отметки верха грунта, можно определить по следующей формуле:

q(х) = gγ(x - a) (418.2)

где g = 9.81 м/с2 - ускорение свободного падения. а = Н1 - Н2 - расстояние между верхней опорой стойки и отметкой верха грунта (на расчетной схеме не показано).

Примечание: значение нагрузки, определенной по формуле (418.2) будет в Паскалях. Если расчет ведется в килограмм-силах, то значение плоской нагрузки можно определять по упрощенной формуле (не умножать правую часть формулы на g). Кроме того нагрузку из плоской следует перевести в линейную, т.е. умножить на 1 погонный метр длины стены, являющийся шириной нашей балки.

3.2. Нагрузку р на покрытие или отмостку снаружи фундаментной стены.

Так как эта нагрузка приведет к условно равномерному сжатию нижележащего грунта, то ее можно рассматривать как равномерно распределенную от нижней опоры до отметки покрытия.

Если нагрузки р и q сложить, что нам позволяет метод суперпозиции, то значение суммарной нагрузки на расстоянии а от верхней опоры будет равно:

Σqa = р + 0 = q1 (418.3.1)

а на нижней опоре:

Σqmax = р + gγH2 = q2 (418.3.1)

Что и отображено на эпюре нагрузки

3.3. Нагрузку от собственного веса покрытия или отмостки.

Если плотность покрытия или отмостки значительно больше, чем плотность расположенного ниже грунта, то при расчетах это следует учитывать, соответственно эпюра нагрузки должна иметь несколько другой вид.

Как правило плотность отмостки или покрытия сопоставима с принимаемой плотностью грунта, а кроме того толщина слоя отмостки или покрытия, имеющего большую плотность, в десятки раз меньше высоты стены, а потому для упрощения расчетов этим влиянием на общий вид эпюры нагрузки можно пренебречь.

Также можно разницу плотностей отмостки и грунта рассматривать как часть нагрузки р.

Изменение моментов, действующих в поперечных сечениях стойки под действием горизонтальной нагрузки, показано на эпюре Mq.

Примечание: Для еще большего упрощения расчетов, нагрузку q, равномерно изменяющуюся от минимального значения q1 до максимального q2 по высоте Н2, можно рассматривать как равномерно изменяющуюся от 0 до максимального значения по всей высоте стены Н1. При этом для определения значений момента в рассматриваемом сечении можно воспользоваться готовыми расчетными схемами для такого частного случая. Если нагрузка на покрытие достаточно велика или покрытие находится почти вровень с верхней опорой стойки, то в этом случае следует пользоваться методом суперпозиции.

4. Определяется значение момента и продольной силы в наиболее нагруженном сечении.

Вообще-то сделать это не так просто, как может показаться на первый взгляд, потому что наиболее нагруженное сечение следует определять с учетом устойчивости стойки.

Т.е. с точки зрения потери устойчивости наиболее опасными являются сечения примерно посредине высоты стойки, а между тем максимальный момент будет действовать примерно на расстоянии Н1/4 от нижней опоры стойки, что видно по суммарной эпюре ΣМ.

В связи с этим рекомендуется рассматривать сечение расположенное на расстоянии Н1/3 от нижней опоры стойки, как наиболее нагруженное.

Значение момента в этом сечении можно определить по эпюре моментов (если таковая будет строиться) или расчетом. Значение продольной силы действующей в рассматриваемом сечении, будет равно:

ΣNx = N1 + Q + N2(х) (418.4)

где N2(х) - нагрузка от собственного веса фундаментной стены в рассматриваемом сечении. Значение этой нагрузки определяется примерно также, как и для вышележащих стен.

5. Определяется коэффициент продольного изгиба φ.

Пример определения коэффициента продольного изгиба приводится отдельно.

6. Проверяется прочность наружной фундаментной стены с учетом устойчивости.

Нормальные напряжения, возникающие в рассматриваемом поперечном сечении, не должны превышать расчетного сопротивления материала стены:

σ = ΣNx/φF + Mx/W ≤ R (418.5)

где F - площадь рассматриваемого сечения стены, W - момент сопротивления данного сечения, R - расчетное сопротивление материала стены.

Вот собственно и все теоретические предпосылки для расчета наружной фундаментной стены при наличии подвала.

Если внутри подвала на фундаментной стене планируется размещение подвесных полок или стеллажей, то это следует учесть как дополнительный момент, действующий на соответствующей высоте или как пару сил, создающих такой момент.

doctorlom.com

Пример 5. Теплотехнический расчет «теплого» подвала

Исходные данные. Вариант № 40.

Здание – жилой дом.

Район строительства: г. Оренбург.

Зона влажности – 3 (сухая).

Расчетные условия

N п.п.

Наименование расчетных параметров

Обозначение параметра

Единица измерения

Расчетное значение

1

Расчетная температура внутреннего воздуха

°С

22

2

Расчетная температура наружного воздуха

°С

- 31

3

Расчетная температура теплого чердака

°С

+ 5

4

Расчетная температура техподполья

°С

+ 2

5

Продолжительность отопительного периода

сут

202

6

Средняя температура наружного воздуха за отопительный период

°С

- 6,3

7

Градусо-сутки отопительного периода

°С·сут

5717

Площадь цокольного перекрытия (над подвалом) Аb=281 м2.

Ширина подвала - 13,8 м; площадь пола подвала - 281 м2.

Высота наружной стены подвала, заглубленной в грунт, - 1,04 м.

Площадь наружных стен подвала, заглубленных в грунт: - Аb = (20,4+20,4) ˣ1,04 = 42,4 м2 (48,9 м2).

Суммарная длина l поперечного сечения ограждений подвала, заглубленных в грунт,

l = 13,8+2×1,04 = 15,88 м.

Высота наружной стены подвала над уровнем земли - 1,2 м.

Площадь наружных стен над уровнем земли Аb.w= (20,4 + 20,4) ˣ 1,2 = 48,9 м2 (53,3 м2).

Объем подвала Vb= 630,6 м3 (646 м3).

1. Сопротивление теплопередаче наружных стен подвала над уровнем земли принимают согласно п. 9.3.2 СП 23-101-2004 равным сопротивлению теплопередаче наружных стен R0b.w=3,7 м2×°С/Вт (из примера 1).

2. Приведенное сопротивление теплопередаче ограждающих конструкций заглубленной части подвала определим согласно п. 9.3.3 СП 23-101-2004 как для стен и полов на грунте, состоящих из термического сопротивления стены, равного 3,7 м2×°С/Вт, и участков пола подвала. Сопротивление теплопередаче участков пола подвала (начиная от стены до середины подвала) шириной: 1 м - 2,1 м2×°С/Вт; 2 м - 4,3 м2×°С/Вт; 2 м - 8,6 м2×°С/Вт; 1,9 м - 14,2 м2×°С/Вт. Соответственно площадь этих участков для части подвала длиной 1 м будет равна 1,04 м2 (стены, контактирующей с грунтом), 1 м2, 2 м2, 2 м2, 1,9 м2.

Таким образом, сопротивление теплопередаче заглубленной части стен подвала равно:

R0r.s=2,1+3,7=5,8 м2×°С/Вт.

Площадь заглубленной части стен подвала составляет: А= 1,04+1+2+2+1,9=7,94м2

Приведенное сопротивление теплопередаче всей ограждающей конструкции определяется по формуле:

(13)

где: Ai, - соответственно площадь i-го участка характерной части ограждающей конструкции, м2, и его приведенное сопротивление теплопередаче, м2×°С/Вт;

А - общая площадь конструкции, равная сумме площадей отдельных участков, м2;

m - число участков ограждающей конструкции с различным приведенным сопротивлением теплопередаче.

Вычислим приведенное сопротивление теплопередаче ограждений заглубленной части подвала.

R0s=7,94/(1,04/5,8+1/2,1+2/4,3+2/8,6+1,9/14,2)=5,25 м2×°С/Вт

3. Согласно таблице 4 нормируемое значение сопротивления теплопередаче, Rreq, перекрытия над подвалом жилого здания:

Rreq = a∙Dd+ b = 0,00045∙5717 + 1,9 = 4,47 м20С/Вт

Требуемое сопротивление теплопередаче цокольного перекрытия над «теплым» подвалом R0b.c определяется по формуле

R0b.c=nR0req,

где n - коэффициент, определяемый при принятой минимальной температуре воздуха в подвале tintb=2 °С

n=(tint-tintb)/(tint-text)=(22-2)/(22+31)=0,38

Тогда R= n∙Rreq = 0,38∙4,47 = 1,7 м20С/Вт

4. Проверим, удовлетворяет ли теплозащита перекрытия над подвалом требованию нормативного перепада Dtn= 2 °С для пола первого этажа.

Минимально допустимое сопротивление теплопередаче цокольного перекрытия определяется из санитарно-гигиенических условий:

R0req = (22 - 2)/(2ˣ8,7) = 1,15 м2×°С/Вт < R0b.c=1,7 м2×°С/Вт.

Минимально допустимое сопротивление теплопередаче цокольного перекрытия над «теплым» подвалом составляет 1,7 м2×°С/Вт при требуемом из условия энергосбережения сопротивлении теплопередаче перекрытий над подвалами 4,47 м2×°С/Вт. Таким образом, в «теплом» подвале обеспечивается теплозащита ограждениями (стенами и полом) подвала эквивалентная требованиям СНиП 23-02-2003.

studfile.net

33. Особенности расчета стен подвала

При проектировании подваль­ных стен зданий должна обеспечиваться продоль­ная и поперечная их пере­вязка. В местах сопряже­ния целесообразно укла­дывать арматурные сетки на цементном растворе в горизонтальные швы клад­ки.

Фундаменты стен под­валов в целях предотвра­щения выпучивания грун­та закладываются ниже уровня пола не менее чем на 50 см.

Наружные стены подвалов рассчитывают на нагрузки от вы­шерасположенной стены, внецентренно приложенной вертикаль­ной нагрузки от перекрытия подвального этажа и бокового дав­ления грунта с временной нормативной нагрузкой, находящейся на поверхности земли, которую при отсутствии специальных тре­бований принимают равной 1000 кгс/см2. Эту нагрузку для удоб­ства расчета заменяют весом дополнительного, эквивалентного слоя грунта высотой Нпр, м:

где Рн — нормативная временная нагрузка на поверхность зем­ли, кгс/м2; -γо — удельный вес грунта, кгс/м3.

Боковое давление грунта на 1 м стены подвала представля­ется трапециевидной эпюрой с верхней ординатой

нижней —

где n1 — коэффициент перегрузки для нагрузки на поверхности земли; n2 — то же, для удельного веса грунта; Hгр — высота эпюры давления грунта; φ— расчетный угол внутреннего трения грунта, принимаемый по нормативным данным.

Стена подвала рассчитывается как балка с двумя неподвиж­ными шарнирными опорами (рис. 102). При наличии бетонного пола расчетная высота подвала принимается равной расстоянию в свету между перекрытием подвала и поверхностью пола. При отсутствии бетонного пола расчетная высота равна расстоянию от нижней поверхности перекрытия до подошвы фундамента.

Суммарная эпюра моментов складывается из эпюр моментов от бокового давления грунта и от менее выгодной комбинации вертикальных нагрузок. Положение максимальной суммарной ординаты эпюры моментов находят методом попыток — опреде­лением ряда ординат в пределах (0,4-0,6) Н.

Толщина стены подвала определяется расчетом на внецентренное сжатие сечений, в которых моменты или продольная сила максимальны.

Толщина стен подвалов из бутобетона по конструктивным со­ображениям должна быть не менее 35 см, сечения столбов — не менее 40 см, толщина стен подвала из бутовой кладки должна быть не менее 50 см, размеры сечения столбов — не менее 60 см.

34. Конструкции и особенности расчета многослойных стен

Многослойные стены проектируют из конструктивных, обли­цовочных и теплоизоляционных слоев, соединяемых жесткими или гибкими связями.

Жесткие связи обеспечивают распределение нагрузки между конструктивными слоями, а также их устойчивость. Гибкие связи в известной мере способствуют увеличению устойчивости конструктивных слоев. Они выполняются из коррозиестойких сталей или сталей, защищенных от коррозии. Суммарную площадь их сечения принимают не менее 0,4 см2 на 1 м2 поверхности стены. Связи между конструктивными слоями стен считаются жест­кими:

а)при любом теплоизоляционном слое, если расстояние между осями вертикальных диафрагм не более 10h (где h — толщина более тонкого конструктивного слоя) и не более 120 см;

б)при стенах с воздушной прослойкой или теплоизоляцион­ным слоем, в которых тычки горизонтальных прокладных рядов в один кирпичный слой заделаны на 12 см, а в другой— не ме­нее чем на 6 см. Расстояние между осями прокладных рядов по высоте кладки принимают не более 5/г и не более 62 см;

в)при стенах с теплоизоляционным слоем из монолитного легкого бетона или в виде кладки из камней марки не ниже 10, при тычковых горизонтальных прокладных рядах, расположен­ных на расстоянии между ними не более указанного в пунк­те «б».

Несущая способность многослойных стен зависит от прочно­сти отдельных слоев, их деформативности, а также способов и взаимного расположения связей.

Расчет многослойных стен по несущей способности при жест­ком соединении слоев производится с учетом различной прочно­сти и упругих свойств слоев и неполного использования прочно­сти слоев при их совместной работе. Площадь сечения приводит­ся к материалу основного несущего слоя, а эксцентриситеты всех усилий определяются по отношению к оси приведенного сечения.

Приведение сечения стены к одному материалу выполняют, принимая толщину слоев фактической, а ширину слоев — про­порциональной характеристикам их прочности по формуле

Где bПр — приведенная ширина слоя; b — фактическая ширина слоя; R, т— расчетное сопротивление и коэффициент использо­вания прочности слоя, к которому приводится сечение; R, m — расчетное сопротивление и коэффициент использования любого другого слоя стены (табл. 29).

Центрально-сжатые элементы рассчитывают по формуле

внецентренно-сжатые — по формуле

где коэффициенты mдл, φ, φ1 определяются по приведенному се­чению и материалу, к которому оно приведено; .Fnp — приведенная площадь сечения; Fпр.с — площадь сжатой части приведен­ного сечения, вычисляемая аналогично определению сжатой час­ти однородного сечения. При расчете двухслойных стен эксцентриситет продольной си­лы, направленный в сторону теплоизоляционного слоя, не допу­скается свыше 0,5 у.

Трехслойные стены с засыпками или заполнением бетоном марки ниже М10 и двухслойные с утеплителем марки Ml 5 и ни­же необходимо рассчитывать по сечению кладки без учета несу­щей способности утеплителя.

Расчет многослойных стен с гибкими связями выполняется для каждого слоя, как самостоятельно работающего, на прило­женные к нему нагрузки. При этом коэффициентφ принимают для условной толщины, равной сумме толщин двух слоев, умно­женной на коэффициент 0,7. Если материал слоев различный, коэффициент φ определяют по приведенной упругой характери­стике

studfile.net


Смотрите также

Читать далее

Контактная информация

194100 Россия, Санкт-Петербург,ул. Кантемировская, дом 7
тел/факс: (812) 295-18-02  e-mail: Этот e-mail защищен от спам-ботов. Для его просмотра в вашем браузере должна быть включена поддержка Java-script

Строительная организация ГК «Интелтехстрой» - промышленное строительство, промышленное проектирование, реконструкция.
Карта сайта, XML.